0


17、Flink 之Table API: Table API 支持的操作(1)

Flink 系列文章

1、Flink 部署、概念介绍、source、transformation、sink使用示例、四大基石介绍和示例等系列综合文章链接

13、Flink 的table api与sql的基本概念、通用api介绍及入门示例
14、Flink 的table api与sql之数据类型: 内置数据类型以及它们的属性
15、Flink 的table api与sql之流式概念-详解的介绍了动态表、时间属性配置(如何处理更新结果)、时态表、流上的join、流上的确定性以及查询配置
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及FileSystem示例(1)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及Elasticsearch示例(2)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及Apache Kafka示例(3)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及JDBC示例(4)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及Apache Hive示例(6)
17、Flink 之Table API: Table API 支持的操作(1)
20、Flink SQL之SQL Client: 不用编写代码就可以尝试 Flink SQL,可以直接提交 SQL 任务到集群上

22、Flink 的table api与sql之创建表的DDL
24、Flink 的table api与sql之Catalogs(介绍、类型、java api和sql实现ddl、java api和sql操作catalog)-1
24、Flink 的table api与sql之Catalogs(java api操作数据库、表)-2
24、Flink 的table api与sql之Catalogs(java api操作视图)-3
24、Flink 的table api与sql之Catalogs(java api操作分区与函数)-4

26、Flink 的SQL之概览与入门示例
27、Flink 的SQL之SELECT (select、where、distinct、order by、limit、集合操作和去重)介绍及详细示例(1)
27、Flink 的SQL之SELECT (SQL Hints 和 Joins)介绍及详细示例(2)
27、Flink 的SQL之SELECT (窗口函数)介绍及详细示例(3)
27、Flink 的SQL之SELECT (窗口聚合)介绍及详细示例(4)
27、Flink 的SQL之SELECT (Group Aggregation分组聚合、Over Aggregation Over聚合 和 Window Join 窗口关联)介绍及详细示例(5)
27、Flink 的SQL之SELECT (Top-N、Window Top-N 窗口 Top-N 和 Window Deduplication 窗口去重)介绍及详细示例(6)
27、Flink 的SQL之SELECT (Pattern Recognition 模式检测)介绍及详细示例(7)
28、Flink 的SQL之DROP 、ALTER 、INSERT 、ANALYZE 语句
29、Flink SQL之DESCRIBE、EXPLAIN、USE、SHOW、LOAD、UNLOAD、SET、RESET、JAR、JOB Statements、UPDATE、DELETE(1)
29、Flink SQL之DESCRIBE、EXPLAIN、USE、SHOW、LOAD、UNLOAD、SET、RESET、JAR、JOB Statements、UPDATE、DELETE(2)
30、Flink SQL之SQL 客户端(通过kafka和filesystem的例子介绍了配置文件使用-表、视图等)
32、Flink table api和SQL 之用户自定义 Sources & Sinks实现及详细示例
41、Flink之Hive 方言介绍及详细示例
42、Flink 的table api与sql之Hive Catalog
43、Flink之Hive 读写及详细验证示例
44、Flink之module模块介绍及使用示例和Flink SQL使用hive内置函数及自定义函数详细示例–网上有些说法好像是错误的


文章目录


本文通过示例介绍了如何使用table api进行表、视图、窗口函数的操作,同时也介绍了table api对表的查询、过滤、列、聚合以及join操作。
关于表的set、order by、insert、group window、over window等相关操作详见下篇文章:17、Flink 之Table API: Table API 支持的操作(2)。
本文依赖flink、kafka、hive集群能正常使用。
本文示例java api的实现是通过Flink 1.17版本做的示例,SQL是在Flink 1.17版本的环境中运行的。
本文分为5个部分,即入门示例、表的查询与过滤、表的列操作、表的聚合操作和表的join操作。

一、Table API介绍

Table API 是批处理和流处理的统一的关系型 API。Table API 的查询不需要修改代码就可以采用批输入或流输入来运行。Table API 是 SQL 语言的超集,并且是针对 Apache Flink 专门设计的。Table API 集成了 Scala,Java 和 Python 语言的 API。Table API 的查询是使用 Java,Scala 或 Python 语言嵌入的风格定义的,有诸如自动补全和语法校验的 IDE 支持,而不是像普通 SQL 一样使用字符串类型的值来指定查询。

Table API 和 Flink SQL 共享许多概念以及部分集成的 API。通过查看公共概念 & API来学习如何注册表或如何创建一个表对象。流概念页面讨论了诸如动态表和时间属性等流特有的概念。

具体内容参照下文:
15、Flink 的table api与sql之流式概念-详解的介绍了动态表、时间属性配置(如何处理更新结果)、时态表、流上的join、流上的确定性以及查询配置

1、入门示例

1)、maven依赖

本文中所有示例,若无特别说明,均使用如下maven依赖。

<properties><encoding>UTF-8</encoding><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding><maven.compiler.source>1.8</maven.compiler.source><maven.compiler.target>1.8</maven.compiler.target><java.version>1.8</java.version><scala.version>2.12</scala.version><flink.version>1.17.0</flink.version></properties><dependencies><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-clients --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-clients</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-java</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-common</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-streaming-java</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-api-java-bridge</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-sql-gateway</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-csv</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-json</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-planner --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-planner_2.12</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-api-java-uber --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-api-java-uber</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-runtime --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-runtime</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-jdbc</artifactId><version>3.1.0-1.17</version></dependency><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>5.1.38</version></dependency><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-hive --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-hive_2.12</artifactId><version>1.17.0</version></dependency><dependency><groupId>org.apache.hive</groupId><artifactId>hive-exec</artifactId><version>3.1.2</version></dependency><!-- flink连接器 --><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kafka --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-kafka</artifactId><version>${flink.version}</version></dependency><!-- https://mvnrepository.com/artifact/org.apache.flink/flink-sql-connector-kafka --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-sql-connector-kafka</artifactId><version>${flink.version}</version><scope>provided</scope></dependency><!-- https://mvnrepository.com/artifact/org.apache.commons/commons-compress --><dependency><groupId>org.apache.commons</groupId><artifactId>commons-compress</artifactId><version>1.24.0</version></dependency><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><version>1.18.2</version></dependency></dependencies>

2)、入门示例1-通过SQL和API创建表

importstaticorg.apache.flink.table.api.Expressions.$;importstaticorg.apache.flink.table.api.Expressions.and;importstaticorg.apache.flink.table.api.Expressions.lit;importstaticorg.apache.flink.table.expressions.ApiExpressionUtils.unresolvedCall;importjava.sql.Timestamp;importjava.time.Duration;importjava.util.Arrays;importjava.util.Collections;importjava.util.HashMap;importjava.util.List;importorg.apache.flink.api.common.eventtime.WatermarkStrategy;importorg.apache.flink.api.common.typeinfo.TypeHint;importorg.apache.flink.api.common.typeinfo.TypeInformation;importorg.apache.flink.api.java.tuple.Tuple2;importorg.apache.flink.api.java.tuple.Tuple3;importorg.apache.flink.streaming.api.datastream.DataStream;importorg.apache.flink.streaming.api.environment.StreamExecutionEnvironment;importorg.apache.flink.streaming.connectors.kafka.table.KafkaConnectorOptions;importorg.apache.flink.table.api.DataTypes;importorg.apache.flink.table.api.EnvironmentSettings;importorg.apache.flink.table.api.Over;importorg.apache.flink.table.api.Schema;importorg.apache.flink.table.api.Table;importorg.apache.flink.table.api.TableDescriptor;importorg.apache.flink.table.api.TableEnvironment;importorg.apache.flink.table.api.Tumble;importorg.apache.flink.table.api.bridge.java.StreamTableEnvironment;importorg.apache.flink.table.catalog.CatalogDatabaseImpl;importorg.apache.flink.table.catalog.CatalogView;importorg.apache.flink.table.catalog.Column;importorg.apache.flink.table.catalog.ObjectPath;importorg.apache.flink.table.catalog.ResolvedCatalogView;importorg.apache.flink.table.catalog.ResolvedSchema;importorg.apache.flink.table.catalog.hive.HiveCatalog;importorg.apache.flink.table.functions.BuiltInFunctionDefinitions;importorg.apache.flink.types.Row;importcom.google.common.collect.Lists;importlombok.AllArgsConstructor;importlombok.Data;importlombok.NoArgsConstructor;/**
 * @author alanchan
 *
 */publicclassTestTableAPIDemo{/**
     * @param args
     * @throws Exception
     */publicstaticvoidmain(String[] args)throwsException{testCreateTableBySQLAndAPI();}staticvoidtestCreateTableBySQLAndAPI()throwsException{//        EnvironmentSettings env = EnvironmentSettings.newInstance().inStreamingMode().build();//        TableEnvironment tenv = TableEnvironment.create(env);StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv =StreamTableEnvironment.create(env);// SQL 创建输入表//        String sourceSql = "CREATE TABLE Alan_KafkaTable (\r\n" + //                "  `event_time` TIMESTAMP(3) METADATA FROM 'timestamp',\r\n" + //                "  `partition` BIGINT METADATA VIRTUAL,\r\n" + //                "  `offset` BIGINT METADATA VIRTUAL,\r\n" + //                "  `user_id` BIGINT,\r\n" + //                "  `item_id` BIGINT,\r\n" + //                "  `behavior` STRING\r\n" + //                ") WITH (\r\n" + //                "  'connector' = 'kafka',\r\n" + //                "  'topic' = 'user_behavior',\r\n" + //                "  'properties.bootstrap.servers' = '192.168.10.41:9092,192.168.10.42:9092,192.168.10.43:9092',\r\n" + //                "  'properties.group.id' = 'testGroup',\r\n" + //                "  'scan.startup.mode' = 'earliest-offset',\r\n" + //                "  'format' = 'csv'\r\n" + //                ");";//        tenv.executeSql(sourceSql);//API创建表Schema schema =Schema.newBuilder().columnByMetadata("event_time",DataTypes.TIME(3),"timestamp").columnByMetadata("partition",DataTypes.BIGINT(),true).columnByMetadata("offset",DataTypes.BIGINT(),true).column("user_id",DataTypes.BIGINT()).column("item_id",DataTypes.BIGINT()).column("behavior",DataTypes.STRING()).build();TableDescriptor kafkaDescriptor =TableDescriptor.forConnector("kafka").comment("kafka source table").schema(schema).option(KafkaConnectorOptions.TOPIC,Lists.newArrayList("user_behavior")).option(KafkaConnectorOptions.PROPS_BOOTSTRAP_SERVERS,"192.168.10.41:9092,192.168.10.42:9092,192.168.10.43:9092").option(KafkaConnectorOptions.PROPS_GROUP_ID,"testGroup").option("scan.startup.mode","earliest-offset").format("csv").build();
        
        tenv.createTemporaryTable("Alan_KafkaTable", kafkaDescriptor);//查询String sql ="select * from Alan_KafkaTable ";Table resultQuery = tenv.sqlQuery(sql);DataStream<Tuple2<Boolean,Row>> resultDS =  tenv.toRetractStream(resultQuery,Row.class);// 6、sink
        resultDS.print();// 7、执行
        env.execute();//kafka中输入测试数据//        1,1001,login//        1,2001,p_read//程序运行控制台输入如下//        11> (true,+I[16:32:19.923, 0, 0, 1, 1001, login])//        11> (true,+I[16:32:32.258, 0, 1, 1, 2001, p_read])}@Data@NoArgsConstructor@AllArgsConstructorpublicstaticclassUser{privatelong id;privateString name;privateint age;privateLong rowtime;}}

上面例子是通过SQL和API两种方式创建一张名称为Alan_KafkaTable 的连接器为kafka的表,然后查询其数据。如需要需要进行聚合操作,直接编写sql即可。

3)、入门示例2-通过SQL和API创建视图

程序的整体框架使用入门示例1的,此处仅仅列出创建视图的方法

staticvoidtestCreateViewByAPI()throwsException{StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv =StreamTableEnvironment.create(env);// SQL 创建输入表String sourceSql ="CREATE TABLE Alan_KafkaTable (\r\n"+"  `event_time` TIMESTAMP(3) METADATA FROM 'timestamp',\r\n"+"  `partition` BIGINT METADATA VIRTUAL,\r\n"+"  `offset` BIGINT METADATA VIRTUAL,\r\n"+"  `user_id` BIGINT,\r\n"+"  `item_id` BIGINT,\r\n"+"  `behavior` STRING\r\n"+") WITH (\r\n"+"  'connector' = 'kafka',\r\n"+"  'topic' = 'user_behavior',\r\n"+"  'properties.bootstrap.servers' = '192.168.10.41:9092,192.168.10.42:9092,192.168.10.43:9092',\r\n"+"  'properties.group.id' = 'testGroup',\r\n"+"  'scan.startup.mode' = 'earliest-offset',\r\n"+"  'format' = 'csv'\r\n"+");";
      tenv.executeSql(sourceSql);// 创建视图String catalogName ="alan_hive";String defaultDatabase ="default";String databaseName ="viewtest_db";String hiveConfDir ="/usr/local/bigdata/apache-hive-3.1.2-bin/conf";HiveCatalog hiveCatalog =newHiveCatalog(catalogName, defaultDatabase, hiveConfDir);
        tenv.registerCatalog(catalogName, hiveCatalog);
        tenv.useCatalog(catalogName);
        hiveCatalog.createDatabase(databaseName,newCatalogDatabaseImpl(newHashMap(), hiveConfDir){},true);
        tenv.useDatabase(databaseName);String viewName ="Alan_KafkaView";String originalQuery ="select user_id , behavior from Alan_KafkaTable group by user_id ,behavior  ";String expandedQuery ="SELECT  user_id , behavior FROM "+databaseName+"."+"Alan_KafkaTable  group by user_id ,behavior   ";String comment ="this is a comment";ObjectPath path=newObjectPath(databaseName, viewName);createView(originalQuery,expandedQuery,comment,hiveCatalog,path);// 查询视图String queryViewSQL  =" select * from Alan_KafkaView ";Table queryViewResult = tenv.sqlQuery(queryViewSQL);DataStream<Tuple2<Boolean,Row>> resultDS =  tenv.toRetractStream(queryViewResult,Row.class);// 6、sink
            resultDS.print();// 7、执行
            env.execute();//kafka中输入测试数据// 1,1001,login// 1,2001,p_read//程序运行控制台输入如下//    3> (true,+I[1, login])//    14> (true,+I[1, p_read])}staticvoidcreateView(String originalQuery,String expandedQuery,String comment,HiveCatalog hiveCatalog,ObjectPath path)throwsException{ResolvedSchema resolvedSchema =newResolvedSchema(Arrays.asList(Column.physical("user_id",DataTypes.INT()),Column.physical("behavior",DataTypes.STRING())),Collections.emptyList(),null);CatalogView origin =CatalogView.of(Schema.newBuilder().fromResolvedSchema(resolvedSchema).build(),
                            comment,
                            originalQuery,
                            expandedQuery,Collections.emptyMap());CatalogView view =newResolvedCatalogView(origin, resolvedSchema);
        hiveCatalog.createTable(path, view,false);}staticvoidtestCreateViewBySQL()throwsException{StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv =StreamTableEnvironment.create(env);// SQL 创建输入表String sourceSql ="CREATE TABLE Alan_KafkaTable (\r\n"+"  `event_time` TIMESTAMP(3) METADATA FROM 'timestamp',\r\n"+"  `partition` BIGINT METADATA VIRTUAL,\r\n"+"  `offset` BIGINT METADATA VIRTUAL,\r\n"+"  `user_id` BIGINT,\r\n"+"  `item_id` BIGINT,\r\n"+"  `behavior` STRING\r\n"+") WITH (\r\n"+"  'connector' = 'kafka',\r\n"+"  'topic' = 'user_behavior',\r\n"+"  'properties.bootstrap.servers' = '192.168.10.41:9092,192.168.10.42:9092,192.168.10.43:9092',\r\n"+"  'properties.group.id' = 'testGroup',\r\n"+"  'scan.startup.mode' = 'earliest-offset',\r\n"+"  'format' = 'csv'\r\n"+");";
      tenv.executeSql(sourceSql);//String sql ="select user_id , behavior from Alan_KafkaTable group by user_id ,behavior ";Table resultQuery = tenv.sqlQuery(sql);
      tenv.createTemporaryView("Alan_KafkaView", resultQuery);String queryViewSQL  =" select * from Alan_KafkaView ";Table queryViewResult = tenv.sqlQuery(queryViewSQL);DataStream<Tuple2<Boolean,Row>> resultDS =  tenv.toRetractStream(queryViewResult,Row.class);// 6、sink
        resultDS.print();// 7、执行
        env.execute();//kafka中输入测试数据// 1,1001,login// 1,2001,p_read//程序运行控制台输入如下//    3> (true,+I[1, login])//    14> (true,+I[1, p_read])}

本示例通过sql和api创建视图,视图是user_id和behavior分组的结果,如果需要聚合直接使用sql即可。

4)、入门示例-通过API查询表(使用窗口函数)

本示例实现了Tumble和Over窗口。
如果使用sql的窗口函数参考:
27、Flink 的SQL之SELECT (Group Aggregation分组聚合、Over Aggregation Over聚合 和 Window Join 窗口关联)介绍及详细示例(5)

staticvoidtestQueryTableWithWindwosByAPI()throwsException{StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv =StreamTableEnvironment.create(env);DataStream<User> users = env.fromCollection(userList).assignTimestampsAndWatermarks(WatermarkStrategy.<User>forBoundedOutOfOrderness(Duration.ofSeconds(1)).withTimestampAssigner((user, recordTimestamp)-> user.getRowtime()));Table usersTable = tenv.fromDataStream(users, $("id"), $("name"), $("age"),$("rt").rowtime());// tumbleTable result = usersTable
                .filter(and(//                            $("name").equals("alanchan"),//                            $("age").between(1, 20),
                            $("name").isNotNull(),
                            $("age").isGreaterOrEqual(19))).window(Tumble.over(lit(1).hours()).on($("rt")).as("hourlyWindow"))// 定义滚动窗口并给窗口起一个别名.groupBy($("name"),$("hourlyWindow"))// 窗口必须出现的分组字段中.select($("name"),$("name").count().as("count(*)"), $("hourlyWindow").start(), $("hourlyWindow").end());
        result.printSchema();DataStream<Tuple2<Boolean,Row>> resultDS =  tenv.toRetractStream(result,Row.class);
        resultDS.print();// over 
        usersTable
            .window(Over.partitionBy($("name")).orderBy($("rt")).preceding(unresolvedCall(BuiltInFunctionDefinitions.UNBOUNDED_RANGE)).as("hourlyWindow")).select($("id"), $("rt"), $("id").count().over($("hourlyWindow")).as("count_t")).execute().print();
        
        env.execute();}

Table API 支持 Scala, Java 和 Python 语言。Scala 语言的 Table API 利用了 Scala 表达式,Java 语言的 Table API 支持 DSL 表达式和解析并转换为等价表达式的字符串,Python 语言的 Table API 仅支持解析并转换为等价表达式的字符串。

整体来看,使用API操作Flink 的表,可能会比较麻烦,大多数还是使用sql比较简单,如果sql不满足的情况下,api是一个补充。

2、表的查询、过滤操作

Table API支持如下操作。请注意不是所有的操作都可以既支持流也支持批;这些操作都具有相应的标记。
具体示例如下,运行结果在源文件中

importstaticorg.apache.flink.table.api.Expressions.$;importstaticorg.apache.flink.table.api.Expressions.row;importstaticorg.apache.flink.table.api.Expressions.and;importorg.apache.flink.api.java.tuple.Tuple2;importorg.apache.flink.streaming.api.datastream.DataStream;importorg.apache.flink.streaming.api.environment.StreamExecutionEnvironment;importorg.apache.flink.table.api.DataTypes;importorg.apache.flink.table.api.Table;importorg.apache.flink.table.api.bridge.java.StreamTableEnvironment;importorg.apache.flink.types.Row;/**
 * @author alanchan
 *
 */publicclassTestTableAPIOperationDemo{staticString sourceSql ="CREATE TABLE Alan_KafkaTable (\r\n"+"  `event_time` TIMESTAMP(3) METADATA FROM 'timestamp',\r\n"+"  `partition` BIGINT METADATA VIRTUAL,\r\n"+"  `offset` BIGINT METADATA VIRTUAL,\r\n"+"  `user_id` BIGINT,\r\n"+"  `item_id` BIGINT,\r\n"+"  `behavior` STRING\r\n"+") WITH (\r\n"+"  'connector' = 'kafka',\r\n"+"  'topic' = 'user_behavior',\r\n"+"  'properties.bootstrap.servers' = '192.168.10.41:9092,192.168.10.42:9092,192.168.10.43:9092',\r\n"+"  'properties.group.id' = 'testGroup',\r\n"+"  'scan.startup.mode' = 'earliest-offset',\r\n"+"  'format' = 'csv'\r\n"+");";/**
     * @param args
     * @throws Exception
     */publicstaticvoidmain(String[] args)throwsException{//        test1();//        test2();test3();}staticvoidtest3()throwsException{StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv =StreamTableEnvironment.create(env);// 建表
        tenv.executeSql(sourceSql);Table table1 = tenv.from("Alan_KafkaTable");// 重命名字段。Table result = table1.as("a","b","c","d","e","f");DataStream<Tuple2<Boolean,Row>> resultDS = tenv.toRetractStream(result,Row.class);
        resultDS.print();//11> (true,+I[2023-11-01T11:00:30.183, 0, 2, 1, 1002, login])//和 SQL 的 WHERE 子句类似。 过滤掉未验证通过过滤谓词的行。Table table2 = result.where($("f").isEqual("login"));DataStream<Tuple2<Boolean,Row>> result2DS = tenv.toRetractStream(table2,Row.class);
        result2DS.print();//11> (true,+I[2023-11-01T11:00:30.183, 0, 2, 1, 1002, login])Table table3 = result.where($("f").isNotEqual("login"));DataStream<Tuple2<Boolean,Row>> result3DS = tenv.toRetractStream(table3,Row.class);
        result3DS.print();// 没有匹配条件的记录,无输出Table table4 = result
                                    .filter(and(
                                                    $("f").isNotNull(),//                                                    $("d").isGreater(1)
                                                    $("e").isNotNull()));DataStream<Tuple2<Boolean,Row>> result4DS = tenv.toRetractStream(table4,Row.class);
        result4DS.print("test filter:");//test filter::11> (true,+I[2023-11-01T11:00:30.183, 0, 2, 1, 1002, login])
        
        env.execute();}/**
     * 和 SQL 查询中的 VALUES 子句类似。 基于提供的行生成一张内联表。
     * 
     * 你可以使用 row(...) 表达式创建复合行:
     * 
     * @throws Exception
     */staticvoidtest2()throwsException{StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv =StreamTableEnvironment.create(env);Table table = tenv.fromValues(row(1,"ABC"),row(2L,"ABCDE"));
        table.printSchema();//        (//                  `f0` BIGINT NOT NULL,//                  `f1` VARCHAR(5) NOT NULL//        )DataStream<Tuple2<Boolean,Row>> resultDS = tenv.toRetractStream(table,Row.class);
        resultDS.print();//        1> (true,+I[2, ABCDE])//        2> (true,+I[1, ABC])Table table2 = tenv.fromValues(DataTypes.ROW(DataTypes.FIELD("id",DataTypes.DECIMAL(10,2)),DataTypes.FIELD("name",DataTypes.STRING())),row(1,"ABCD"),row(2L,"ABCDEF"));
        table2.printSchema();//        (//                  `id` DECIMAL(10, 2),//                  `name` STRING//        )DataStream<Tuple2<Boolean,Row>> result2DS = tenv.toRetractStream(table2,Row.class);
        result2DS.print();//        15> (true,+I[2.00, ABCDEF])//        14> (true,+I[1.00, ABCD])
        env.execute();}/**
     * 和 SQL 查询的 FROM 子句类似。 执行一个注册过的表的扫描。
     * 
     * @throws Exception
     */staticvoidtest1()throwsException{StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv =StreamTableEnvironment.create(env);// 建表
        tenv.executeSql(sourceSql);// 查询//        tenv.from("Alan_KafkaTable").execute().print();// kafka输入数据// 1,1002,login// 应用程序控制台输出如下//        +----+-------------------------+----------------------+----------------------+----------------------+----------------------+--------------------------------+//        | op |              event_time |            partition |               offset |              user_id |              item_id |                       behavior |//        +----+-------------------------+----------------------+----------------------+----------------------+----------------------+--------------------------------+//        | +I | 2023-11-01 11:00:30.183 |                    0 |                    2 |                    1 |                 1002 |                          login |Table temp = tenv.from("Alan_KafkaTable");//和 SQL 的 SELECT 子句类似。 执行一个 select 操作Table result1 = temp.select($("user_id"), $("item_id").as("behavior"), $("event_time"));DataStream<Tuple2<Boolean,Row>> result1DS = tenv.toRetractStream(result1,Row.class);//        result1DS.print();// 11> (true,+I[1, 1002, 2023-11-01T11:00:30.183])//选择星号(*)作为通配符,select 表中的所有列。Table result2 = temp.select($("*"));DataStream<Tuple2<Boolean,Row>> result2DS = tenv.toRetractStream(result2,Row.class);
        result2DS.print();// 11> (true,+I[2023-11-01T11:00:30.183, 0, 2, 1, 1002, login])
        env.execute();}}

3、表的列操作

具体示例如下,运行结果在源文件中

importstaticorg.apache.flink.table.api.Expressions.$;importstaticorg.apache.flink.table.api.Expressions.row;importstaticorg.apache.flink.table.api.Expressions.and;importstaticorg.apache.flink.table.api.Expressions.concat;importorg.apache.flink.api.java.tuple.Tuple2;importorg.apache.flink.streaming.api.datastream.DataStream;importorg.apache.flink.streaming.api.environment.StreamExecutionEnvironment;importorg.apache.flink.table.api.DataTypes;importorg.apache.flink.table.api.Table;importorg.apache.flink.table.api.bridge.java.StreamTableEnvironment;importorg.apache.flink.types.Row;/**
 * @author alanchan
 *
 */publicclassTestTableAPIOperationDemo{staticString sourceSql ="CREATE TABLE Alan_KafkaTable (\r\n"+"  `event_time` TIMESTAMP(3) METADATA FROM 'timestamp',\r\n"+"  `partition` BIGINT METADATA VIRTUAL,\r\n"+"  `offset` BIGINT METADATA VIRTUAL,\r\n"+"  `user_id` BIGINT,\r\n"+"  `item_id` BIGINT,\r\n"+"  `behavior` STRING\r\n"+") WITH (\r\n"+"  'connector' = 'kafka',\r\n"+"  'topic' = 'user_behavior',\r\n"+"  'properties.bootstrap.servers' = '192.168.10.41:9092,192.168.10.42:9092,192.168.10.43:9092',\r\n"+"  'properties.group.id' = 'testGroup',\r\n"+"  'scan.startup.mode' = 'earliest-offset',\r\n"+"  'format' = 'csv'\r\n"+");";/**
     * @param args
     * @throws Exception
     */publicstaticvoidmain(String[] args)throwsException{//        test1();//        test2();test3();}staticvoidtest3()throwsException{StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv =StreamTableEnvironment.create(env);// 建表
        tenv.executeSql(sourceSql);Table table1 = tenv.from("Alan_KafkaTable");// 重命名字段。Table result = table1.as("a","b","c","d","e","f");DataStream<Tuple2<Boolean,Row>> resultDS = tenv.toRetractStream(result,Row.class);
        resultDS.print();//11> (true,+I[2023-11-01T11:00:30.183, 0, 2, 1, 1002, login])//和 SQL 的 WHERE 子句类似。 过滤掉未验证通过过滤谓词的行。Table table2 = result.where($("f").isEqual("login"));DataStream<Tuple2<Boolean,Row>> result2DS = tenv.toRetractStream(table2,Row.class);
        result2DS.print();//11> (true,+I[2023-11-01T11:00:30.183, 0, 2, 1, 1002, login])Table table3 = result.where($("f").isNotEqual("login"));DataStream<Tuple2<Boolean,Row>> result3DS = tenv.toRetractStream(table3,Row.class);
        result3DS.print();// 没有匹配条件的记录,无输出Table table4 = result
                                    .filter(and(
                                                    $("f").isNotNull(),//                                                    $("d").isGreater(1)
                                                    $("e").isNotNull()));DataStream<Tuple2<Boolean,Row>> result4DS = tenv.toRetractStream(table4,Row.class);
        result4DS.print("test filter:");//test filter::11> (true,+I[2023-11-01T11:00:30.183, 0, 2, 1, 1002, login])
        
        env.execute();}/**
     * 和 SQL 查询中的 VALUES 子句类似。 基于提供的行生成一张内联表。
     * 
     * 你可以使用 row(...) 表达式创建复合行:
     * 
     * @throws Exception
     */staticvoidtest2()throwsException{StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv =StreamTableEnvironment.create(env);Table table = tenv.fromValues(row(1,"ABC"),row(2L,"ABCDE"));
        table.printSchema();//        (//                  `f0` BIGINT NOT NULL,//                  `f1` VARCHAR(5) NOT NULL//        )DataStream<Tuple2<Boolean,Row>> resultDS = tenv.toRetractStream(table,Row.class);
        resultDS.print();//        1> (true,+I[2, ABCDE])//        2> (true,+I[1, ABC])Table table2 = tenv.fromValues(DataTypes.ROW(DataTypes.FIELD("id",DataTypes.DECIMAL(10,2)),DataTypes.FIELD("name",DataTypes.STRING())),row(1,"ABCD"),row(2L,"ABCDEF"));
        table2.printSchema();//        (//                  `id` DECIMAL(10, 2),//                  `name` STRING//        )DataStream<Tuple2<Boolean,Row>> result2DS = tenv.toRetractStream(table2,Row.class);
        result2DS.print();//        15> (true,+I[2.00, ABCDEF])//        14> (true,+I[1.00, ABCD])
        env.execute();}/**
     * 和 SQL 查询的 FROM 子句类似。 执行一个注册过的表的扫描。
     * 
     * @throws Exception
     */staticvoidtest1()throwsException{StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv =StreamTableEnvironment.create(env);// 建表
        tenv.executeSql(sourceSql);// 查询//        tenv.from("Alan_KafkaTable").execute().print();// kafka输入数据// 1,1002,login// 应用程序控制台输出如下//        +----+-------------------------+----------------------+----------------------+----------------------+----------------------+--------------------------------+//        | op |              event_time |            partition |               offset |              user_id |              item_id |                       behavior |//        +----+-------------------------+----------------------+----------------------+----------------------+----------------------+--------------------------------+//        | +I | 2023-11-01 11:00:30.183 |                    0 |                    2 |                    1 |                 1002 |                          login |Table temp = tenv.from("Alan_KafkaTable");//和 SQL 的 SELECT 子句类似。 执行一个 select 操作Table result1 = temp.select($("user_id"), $("item_id").as("behavior"), $("event_time"));DataStream<Tuple2<Boolean,Row>> result1DS = tenv.toRetractStream(result1,Row.class);//        result1DS.print();// 11> (true,+I[1, 1002, 2023-11-01T11:00:30.183])//选择星号(*)作为通配符,select 表中的所有列。Table result2 = temp.select($("*"));DataStream<Tuple2<Boolean,Row>> result2DS = tenv.toRetractStream(result2,Row.class);
        result2DS.print();// 11> (true,+I[2023-11-01T11:00:30.183, 0, 2, 1, 1002, login])
        env.execute();}staticvoidtest5()throwsException{StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv =StreamTableEnvironment.create(env);// 建表
        tenv.executeSql(sourceSql);Table table = tenv.from("Alan_KafkaTable");//和 SQL 的 GROUP BY 子句类似。 使用分组键对行进行分组,使用伴随的聚合算子来按照组进行聚合行。Table result = table.groupBy($("user_id")).select($("user_id"), $("user_id").count().as("count(user_id)"));DataStream<Tuple2<Boolean,Row>> resultDS = tenv.toRetractStream(result,Row.class);
        resultDS.print();//        12> (true,+I[1, 1])
        
        env.execute();}staticvoidtest4()throwsException{StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv =StreamTableEnvironment.create(env);// 建表
        tenv.executeSql(sourceSql);Table table = tenv.from("Alan_KafkaTable");//执行字段添加操作。 如果所添加的字段已经存在,将抛出异常。Table result2 = table.addColumns($("behavior").plus(1).as("t_col1"));
        result2.printSchema();//        (//                  `event_time` TIMESTAMP(3),//                  `partition` BIGINT,//                  `offset` BIGINT,//                  `user_id` BIGINT,//                  `item_id` BIGINT,//                  `behavior` STRING,//                  `t_col1` STRING//                )Table result = table.addColumns($("behavior").plus(1).as("t_col3"),concat($("behavior"),"alanchan").as("t_col4"));
        result.printSchema();//        (//                  `event_time` TIMESTAMP(3),//                  `partition` BIGINT,//                  `offset` BIGINT,//                  `user_id` BIGINT,//                  `item_id` BIGINT,//                  `behavior` STRING,//                  `t_col3` STRING,//                  `t_col4` STRING//                )Table result3 = table.addColumns(concat($("behavior"),"alanchan").as("t_col4"));
        result3.printSchema();//        (//                  `event_time` TIMESTAMP(3),//                  `partition` BIGINT,//                  `offset` BIGINT,//                  `user_id` BIGINT,//                  `item_id` BIGINT,//                  `behavior` STRING,//                  `t_col4` STRING//                )//执行字段添加操作。 如果添加的列名称和已存在的列名称相同,则已存在的字段将被替换。 此外,如果添加的字段里面有重复的字段名,则会使用最后一个字段。Table result4 = result3.addOrReplaceColumns(concat($("t_col4"),"alanchan").as("t_col"));
        result4.printSchema();//        (//                  `event_time` TIMESTAMP(3),//                  `partition` BIGINT,//                  `offset` BIGINT,//                  `user_id` BIGINT,//                  `item_id` BIGINT,//                  `behavior` STRING,//                  `t_col4` STRING,//                  `t_col` STRING//                )Table result5 = result4.dropColumns($("t_col4"), $("t_col"));
        result5.printSchema();//        (//                  `event_time` TIMESTAMP(3),//                  `partition` BIGINT,//                  `offset` BIGINT,//                  `user_id` BIGINT,//                  `item_id` BIGINT,//                  `behavior` STRING//                )//执行字段重命名操作。 字段表达式应该是别名表达式,并且仅当字段已存在时才能被重命名。Table result6 = result4.renameColumns($("t_col4").as("col1"), $("t_col").as("col2"));
        result6.printSchema();//        (//                  `event_time` TIMESTAMP(3),//                  `partition` BIGINT,//                  `offset` BIGINT,//                  `user_id` BIGINT,//                  `item_id` BIGINT,//                  `behavior` STRING,//                  `col1` STRING,//                  `col2` STRING//                )DataStream<Tuple2<Boolean,Row>> resultDS = tenv.toRetractStream(table,Row.class);
        resultDS.print();//        11> (true,+I[2023-11-01T11:00:30.183, 0, 2, 1, 1002, login])
        
        env.execute();}}

4、表的聚合操作

1)、示例代码公共部分

本部分仅仅就是用的公共对象,比如User的定义,和需要引入的包

importstaticorg.apache.flink.table.api.Expressions.$;importstaticorg.apache.flink.table.api.Expressions.lit;importstaticorg.apache.flink.table.expressions.ApiExpressionUtils.unresolvedCall;importjava.time.Duration;importjava.util.Arrays;importjava.util.List;importorg.apache.flink.api.common.eventtime.WatermarkStrategy;importorg.apache.flink.api.java.tuple.Tuple2;importorg.apache.flink.streaming.api.datastream.DataStream;importorg.apache.flink.streaming.api.environment.StreamExecutionEnvironment;importorg.apache.flink.table.api.Over;importorg.apache.flink.table.api.Table;importorg.apache.flink.table.api.Tumble;importorg.apache.flink.table.api.bridge.java.StreamTableEnvironment;importorg.apache.flink.table.functions.BuiltInFunctionDefinitions;importorg.apache.flink.types.Row;importlombok.AllArgsConstructor;importlombok.Data;importlombok.NoArgsConstructor;/**
 * @author alanchan
 *
 */publicclassTestTableAPIOperationDemo2{finalstaticList<User> userList =Arrays.asList(newUser(1L,"alan",18,1698742358391L),newUser(2L,"alan",19,1698742359396L),newUser(3L,"alan",25,1698742360407L),newUser(4L,"alanchan",28,1698742361409L),newUser(5L,"alanchan",29,1698742362424L));/**
     * @param args
     * @throws Exception
     */publicstaticvoidmain(String[] args)throwsException{//        test1();//        test2();//        test3();test4();}@Data@NoArgsConstructor@AllArgsConstructorpublicstaticclassUser{privatelong id;privateString name;privateint balance;privateLong rowtime;}}

2)、group by

本示例仅仅展示了group by操作,比较简单。

staticvoidtest2()throwsException{StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv =StreamTableEnvironment.create(env);// 建表
        tenv.executeSql(sourceSql);Table table = tenv.from("Alan_KafkaTable");//和 SQL 的 GROUP BY 子句类似。 使用分组键对行进行分组,使用伴随的聚合算子来按照组进行聚合行。Table result = table.groupBy($("user_id")).select($("user_id"), $("user_id").count().as("count(user_id)"));DataStream<Tuple2<Boolean,Row>> resultDS = tenv.toRetractStream(result,Row.class);
        resultDS.print();//        12> (true,+I[1, 1])
        
        env.execute();}

3)、GroupBy Window Aggregation

使用分组窗口结合单个或者多个分组键对表进行分组和聚合。

staticvoidtest2()throwsException{StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv =StreamTableEnvironment.create(env);DataStream<User> users = env.fromCollection(userList).assignTimestampsAndWatermarks(WatermarkStrategy.<User>forBoundedOutOfOrderness(Duration.ofSeconds(1)).withTimestampAssigner((user, recordTimestamp)-> user.getRowtime()));Table usersTable = tenv.fromDataStream(users, $("id"), $("name"), $("balance"),$("rowtime").rowtime());//使用分组窗口结合单个或者多个分组键对表进行分组和聚合。Table result = usersTable
                .window(Tumble.over(lit(5).minutes()).on($("rowtime")).as("w"))// 定义窗口.groupBy($("name"), $("w"))// 按窗口和键分组// 访问窗口属性并聚合.select(
                    $("name"),
                    $("w").start(),
                    $("w").end(),
                    $("w").rowtime(),
                    $("balance").sum().as("sum(balance)"));DataStream<Tuple2<Boolean,Row>> resultDS = tenv.toRetractStream(result,Row.class);
        resultDS.print();//        2> (true,+I[alan, 2023-10-31T08:50, 2023-10-31T08:55, 2023-10-31T08:54:59.999, 62])//        16> (true,+I[alanchan, 2023-10-31T08:50, 2023-10-31T08:55, 2023-10-31T08:54:59.999, 57])
        env.execute();}

4)、Over Window Aggregation

和 SQL 的 OVER 子句类似。

staticvoidtest3()throwsException{StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv =StreamTableEnvironment.create(env);DataStream<User> users = env.fromCollection(userList).assignTimestampsAndWatermarks(WatermarkStrategy.<User>forBoundedOutOfOrderness(Duration.ofSeconds(1)).withTimestampAssigner((user, recordTimestamp)-> user.getRowtime()));Table usersTable = tenv.fromDataStream(users, $("id"), $("name"), $("balance"),$("rowtime").rowtime());//        所有的聚合必须定义在同一个窗口上,比如同一个分区、排序和范围内。目前只支持 PRECEDING 到当前行范围(无界或有界)的窗口。//尚不支持 FOLLOWING 范围的窗口。ORDER BY 操作必须指定一个单一的时间属性。Table result = usersTable
                // 定义窗口.window(Over.partitionBy($("name")).orderBy($("rowtime")).preceding(unresolvedCall(BuiltInFunctionDefinitions.UNBOUNDED_RANGE)).following(unresolvedCall(BuiltInFunctionDefinitions.CURRENT_RANGE)).as("w"))// 滑动聚合.select(
                    $("id"),
                    $("balance").avg().over($("w")),
                    $("balance").max().over($("w")),
                    $("balance").min().over($("w")));DataStream<Tuple2<Boolean,Row>> resultDS = tenv.toRetractStream(result,Row.class);
        resultDS.print();//        2> (true,+I[1, 18, 18, 18])//        16> (true,+I[4, 28, 28, 28])//        2> (true,+I[2, 18, 19, 18])//        16> (true,+I[5, 28, 29, 28])//        2> (true,+I[3, 20, 25, 18])
        
        env.execute();}

5)、Distinct Aggregation

/**
     * 和 SQL DISTINCT 聚合子句类似,例如 COUNT(DISTINCT a)。 
     * Distinct 聚合声明的聚合函数(内置或用户定义的)仅应用于互不相同的输入值。 
     * Distinct 可以应用于 GroupBy Aggregation、GroupBy Window Aggregation 和 Over Window Aggregation。
     * @throws Exception
     */staticvoidtest4()throwsException{StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv =StreamTableEnvironment.create(env);DataStream<User> users = env.fromCollection(userList).assignTimestampsAndWatermarks(WatermarkStrategy.<User>forBoundedOutOfOrderness(Duration.ofSeconds(1)).withTimestampAssigner((user, recordTimestamp)-> user.getRowtime()));Table usersTable = tenv.fromDataStream(users, $("id"), $("name"), $("balance"),$("rowtime").rowtime());// 按属性分组后的的互异(互不相同、去重)聚合Table groupByDistinctResult = usersTable
            .groupBy($("name")).select($("name"), $("balance").sum().distinct().as("sum_balance"));DataStream<Tuple2<Boolean,Row>> resultDS = tenv.toRetractStream(groupByDistinctResult,Row.class);//        resultDS.print();//        2> (true,+I[alan, 18])//        16> (true,+I[alanchan, 28])//        16> (false,-U[alanchan, 28])//        2> (false,-U[alan, 18])//        16> (true,+U[alanchan, 57])//        2> (true,+U[alan, 37])//        2> (false,-U[alan, 37])//        2> (true,+U[alan, 62])//按属性、时间窗口分组后的互异(互不相同、去重)聚合Table groupByWindowDistinctResult = usersTable
                .window(Tumble.over(lit(5).minutes()).on($("rowtime")).as("w")).groupBy($("name"), $("w")).select($("name"), $("balance").sum().distinct().as("sum_balance"));DataStream<Tuple2<Boolean,Row>> result2DS = tenv.toRetractStream(groupByDistinctResult,Row.class);//        result2DS.print();//        16> (true,+I[alanchan, 28])//        2> (true,+I[alan, 18])//        16> (false,-U[alanchan, 28])//        2> (false,-U[alan, 18])//        16> (true,+U[alanchan, 57])//        2> (true,+U[alan, 37])//        2> (false,-U[alan, 37])//        2> (true,+U[alan, 62])//over window 上的互异(互不相同、去重)聚合Table result = usersTable
                .window(Over.partitionBy($("name")).orderBy($("rowtime")).preceding(unresolvedCall(BuiltInFunctionDefinitions.UNBOUNDED_RANGE)).as("w")).select(
                    $("name"), $("balance").avg().distinct().over($("w")),
                    $("balance").max().over($("w")),
                    $("balance").min().over($("w")));DataStream<Tuple2<Boolean,Row>> result3DS = tenv.toRetractStream(result,Row.class);
        result3DS.print();//        16> (true,+I[alanchan, 28, 28, 28])//        2> (true,+I[alan, 18, 18, 18])//        2> (true,+I[alan, 18, 19, 18])//        16> (true,+I[alanchan, 28, 29, 28])//        2> (true,+I[alan, 20, 25, 18])
        
        env.execute();}

用户定义的聚合函数也可以与 DISTINCT 修饰符一起使用。如果计算不同(互异、去重的)值的聚合结果,则只需向聚合函数添加 distinct 修饰符即可。

Table orders = tEnv.from("Orders");// 对 user-defined aggregate functions 使用互异(互不相同、去重)聚合
tEnv.registerFunction("myUdagg",newMyUdagg());
orders.groupBy("users").select(
        $("users"),call("myUdagg", $("points")).distinct().as("myDistinctResult"));

6)、Distinct

和 SQL 的 DISTINCT 子句类似。 返回具有不同组合值的记录。

staticvoidtest5()throwsException{StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv =StreamTableEnvironment.create(env);List<User> userList =Arrays.asList(newUser(1L,"alan",18,1698742358391L),newUser(2L,"alan",19,1698742359396L),newUser(3L,"alan",25,1698742360407L),newUser(4L,"alanchan",28,1698742361409L),newUser(5L,"alanchan",29,1698742362424L),newUser(5L,"alanchan",29,1698742362424L));DataStream<User> users = env.fromCollection(userList).assignTimestampsAndWatermarks(WatermarkStrategy.<User>forBoundedOutOfOrderness(Duration.ofSeconds(1)).withTimestampAssigner((user, recordTimestamp)-> user.getRowtime()));Table usersTable = tenv.fromDataStream(users, $("id"), $("name"), $("balance"),$("rowtime").rowtime());//        Table orders = tableEnv.from("Orders");Table result = usersTable.distinct();DataStream<Tuple2<Boolean,Row>> resultDS = tenv.toRetractStream(result,Row.class);
        resultDS.print();// 数据集有6条记录,并且有一条是重复的,故只输出5条//        9> (true,+I[2, alan, 19, 2023-10-31T08:52:39.396])//        1> (true,+I[1, alan, 18, 2023-10-31T08:52:38.391])//        13> (true,+I[3, alan, 25, 2023-10-31T08:52:40.407])//        7> (true,+I[4, alanchan, 28, 2023-10-31T08:52:41.409])//        13> (true,+I[5, alanchan, 29, 2023-10-31T08:52:42.424])
        
        env.execute();}

5、表的join操作

本部分介绍了表的join主要操作,比如内联接、外联接以及联接自定义函数等,其中时态表的联接以scala的示例进行说明。
关于自定义函数的联接将在flink 自定义函数中介绍,因为使用函数和联接本身关系不是非常密切。
19、Flink 的Table API 和 SQL 中的自定义函数(2)

1)、关于join的示例

importstaticorg.apache.flink.table.api.Expressions.$;importstaticorg.apache.flink.table.api.Expressions.and;importstaticorg.apache.flink.table.api.Expressions.call;importjava.util.Arrays;importjava.util.List;importorg.apache.flink.api.java.tuple.Tuple2;importorg.apache.flink.api.java.tuple.Tuple3;importorg.apache.flink.streaming.api.datastream.DataStream;importorg.apache.flink.streaming.api.environment.StreamExecutionEnvironment;importorg.apache.flink.table.api.Table;importorg.apache.flink.table.api.bridge.java.StreamTableEnvironment;importorg.apache.flink.table.functions.TableFunction;importorg.apache.flink.table.functions.TemporalTableFunction;importorg.apache.flink.types.Row;importlombok.AllArgsConstructor;importlombok.Data;importlombok.NoArgsConstructor;/**
 * @author alanchan
 *
 */publicclassTestTableAPIJoinOperationDemo{@Data@NoArgsConstructor@AllArgsConstructorpublicstaticclassUser{privatelong id;privateString name;privatedouble balance;privateLong rowtime;}@Data@NoArgsConstructor@AllArgsConstructorpublicstaticclassOrder{privatelong id;privatelong user_id;privatedouble amount;privateLong rowtime;}finalstaticList<User> userList =Arrays.asList(newUser(1L,"alan",18,1698742358391L),newUser(2L,"alan",19,1698742359396L),newUser(3L,"alan",25,1698742360407L),newUser(4L,"alanchan",28,1698742361409L),newUser(5L,"alanchan",29,1698742362424L));finalstaticList<Order> orderList =Arrays.asList(newOrder(1L,1,18,1698742358391L),newOrder(2L,2,19,1698742359396L),newOrder(3L,1,25,1698742360407L),newOrder(4L,3,28,1698742361409L),newOrder(5L,1,29,1698742362424L),newOrder(6L,4,49,1698742362424L));staticvoidtestInnerJoin()throwsException{StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv =StreamTableEnvironment.create(env);DataStream<User> users = env.fromCollection(userList);Table usersTable = tenv.fromDataStream(users, $("id"), $("name"),$("balance"),$("rowtime"));DataStream<Order> orders = env.fromCollection(orderList);Table ordersTable = tenv.fromDataStream(orders, $("id"), $("user_id"), $("amount"),$("rowtime"));Table left = usersTable.select($("id").as("userId"), $("name"), $("balance"),$("rowtime").as("u_rowtime"));Table right = ordersTable.select($("id").as("orderId"), $("user_id"), $("amount"),$("rowtime").as("o_rowtime"));Table result = left.join(right).where($("user_id").isEqual($("userId"))).select($("orderId"), $("user_id"), $("amount"),$("o_rowtime"),$("name"),$("balance"));DataStream<Tuple2<Boolean,Row>> resultDS = tenv.toRetractStream(result,Row.class);
        resultDS.print();//        15> (true,+I[4, 3, 28.0, 1698742361409, alan, 25])//        12> (true,+I[1, 1, 18.0, 1698742358391, alan, 18])//        3> (true,+I[6, 4, 49.0, 1698742362424, alanchan, 28])//        12> (true,+I[2, 2, 19.0, 1698742359396, alan, 19])//        12> (true,+I[3, 1, 25.0, 1698742360407, alan, 18])//        12> (true,+I[5, 1, 29.0, 1698742362424, alan, 18])
        
        env.execute();}/**
     * 和 SQL LEFT/RIGHT/FULL OUTER JOIN 子句类似。 关联两张表。 两张表必须有不同的字段名,并且必须定义至少一个等式连接谓词。
     * @throws Exception
     */staticvoidtestOuterJoin()throwsException{StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv =StreamTableEnvironment.create(env);DataStream<User> users = env.fromCollection(userList);Table usersTable = tenv.fromDataStream(users, $("id"), $("name"),$("balance"),$("rowtime"));DataStream<Order> orders = env.fromCollection(orderList);Table ordersTable = tenv.fromDataStream(orders, $("id"), $("user_id"), $("amount"),$("rowtime"));Table left = usersTable.select($("id").as("userId"), $("name"), $("balance"),$("rowtime").as("u_rowtime"));Table right = ordersTable.select($("id").as("orderId"), $("user_id"), $("amount"),$("rowtime").as("o_rowtime"));Table leftOuterResult = left.leftOuterJoin(right, $("user_id").isEqual($("userId"))).select($("orderId"), $("user_id"), $("amount"),$("o_rowtime"),$("name"),$("balance"));DataStream<Tuple2<Boolean,Row>> leftOuterResultDS = tenv.toRetractStream(leftOuterResult,Row.class);//        leftOuterResultDS.print();//        12> (true,+I[null, null, null, null, alan, 18])//        3> (true,+I[null, null, null, null, alanchan, 28])//        12> (false,-D[null, null, null, null, alan, 18])//        12> (true,+I[1, 1, 18.0, 1698742358391, alan, 18])//        15> (true,+I[4, 3, 28.0, 1698742361409, alan, 25])//        12> (true,+I[null, null, null, null, alan, 19])//        3> (false,-D[null, null, null, null, alanchan, 28])//        12> (false,-D[null, null, null, null, alan, 19])//        3> (true,+I[6, 4, 49.0, 1698742362424, alanchan, 28])//        12> (true,+I[2, 2, 19.0, 1698742359396, alan, 19])//        12> (true,+I[3, 1, 25.0, 1698742360407, alan, 18])//        3> (true,+I[null, null, null, null, alanchan, 29])//        12> (true,+I[5, 1, 29.0, 1698742362424, alan, 18])Table rightOuterResult = left.rightOuterJoin(right, $("user_id").isEqual($("userId"))).select($("orderId"), $("user_id"), $("amount"),$("o_rowtime"),$("name"),$("balance"));DataStream<Tuple2<Boolean,Row>> rightOuterResultDS = tenv.toRetractStream(rightOuterResult,Row.class);//        rightOuterResultDS.print();//        12> (true,+I[1, 1, 18.0, 1698742358391, alan, 18])//        3> (true,+I[6, 4, 49.0, 1698742362424, alanchan, 28])//        15> (true,+I[4, 3, 28.0, 1698742361409, alan, 25])//        12> (true,+I[2, 2, 19.0, 1698742359396, alan, 19])//        12> (true,+I[3, 1, 25.0, 1698742360407, alan, 18])//        12> (true,+I[5, 1, 29.0, 1698742362424, alan, 18])Table fullOuterResult = left.fullOuterJoin(right, $("user_id").isEqual($("userId"))).select($("orderId"), $("user_id"), $("amount"),$("o_rowtime"),$("name"),$("balance"));DataStream<Tuple2<Boolean,Row>> fullOuterResultDS = tenv.toRetractStream(fullOuterResult,Row.class);
        fullOuterResultDS.print();//        3> (true,+I[6, 4, 49.0, 1698742362424, null, null])//        12> (true,+I[1, 1, 18.0, 1698742358391, null, null])//        15> (true,+I[4, 3, 28.0, 1698742361409, null, null])//        12> (false,-D[1, 1, 18.0, 1698742358391, null, null])//        3> (false,-D[6, 4, 49.0, 1698742362424, null, null])//        12> (true,+I[1, 1, 18.0, 1698742358391, alan, 18])//        3> (true,+I[6, 4, 49.0, 1698742362424, alanchan, 28])//        3> (true,+I[null, null, null, null, alanchan, 29])//        12> (true,+I[2, 2, 19.0, 1698742359396, null, null])//        12> (false,-D[2, 2, 19.0, 1698742359396, null, null])//        12> (true,+I[2, 2, 19.0, 1698742359396, alan, 19])//        15> (false,-D[4, 3, 28.0, 1698742361409, null, null])//        12> (true,+I[3, 1, 25.0, 1698742360407, alan, 18])//        15> (true,+I[4, 3, 28.0, 1698742361409, alan, 25])//        12> (true,+I[5, 1, 29.0, 1698742362424, alan, 18])
        
        env.execute();}/**
     * Interval join 是可以通过流模式处理的常规 join 的子集。
     * Interval join 至少需要一个 equi-join 谓词和一个限制双方时间界限的 join 条件。
     * 这种条件可以由两个合适的范围谓词(<、<=、>=、>)或一个比较两个输入表相同时间属性(即处理时间或事件时间)的等值谓词来定义。
     * @throws Exception
     */staticvoidtestIntervalJoin()throwsException{StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv =StreamTableEnvironment.create(env);DataStream<User> users = env.fromCollection(userList);Table usersTable = tenv.fromDataStream(users, $("id"), $("name"),$("balance"),$("rowtime"));DataStream<Order> orders = env.fromCollection(orderList);Table ordersTable = tenv.fromDataStream(orders, $("id"), $("user_id"), $("amount"),$("rowtime"));Table left = usersTable.select($("id").as("userId"), $("name"), $("balance"),$("rowtime").as("u_rowtime"));Table right = ordersTable.select($("id").as("orderId"), $("user_id"), $("amount"),$("rowtime").as("o_rowtime"));Table result = left.join(right).where(and(
                            $("user_id").isEqual($("userId")),
                            $("user_id").isLess(3)//                            $("u_rowtime").isGreaterOrEqual($("o_rowtime").minus(lit(5).minutes())),//                            $("u_rowtime").isLess($("o_rowtime").plus(lit(10).minutes())))).select($("orderId"), $("user_id"), $("amount"),$("o_rowtime"),$("name"),$("balance"));
        result.printSchema();DataStream<Tuple2<Boolean,Row>> resultDS = tenv.toRetractStream(result,Row.class);
        resultDS.print();//        12> (true,+I[1, 1, 18.0, 1698742358391, alan, 18.0])//        12> (true,+I[2, 2, 19.0, 1698742359396, alan, 19.0])//        12> (true,+I[3, 1, 25.0, 1698742360407, alan, 18.0])//        12> (true,+I[5, 1, 29.0, 1698742362424, alan, 18.0])
        
        env.execute();}/**
     * join 表和表函数的结果。左(外部)表的每一行都会 join 表函数相应调用产生的所有行。 
     * 如果表函数调用返回空结果,则删除左侧(外部)表的一行。
     * 该示例为示例性的,具体的验证将在自定义函数中进行说明
     * 
     * @throws Exception
     */staticvoidtestInnerJoinWithUDTF()throwsException{StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv =StreamTableEnvironment.create(env);// 注册 User-Defined Table FunctionTableFunction<Tuple3<String,String,String>> split =newSplitFunction();
        tenv.registerFunction("split", split);// joinDataStream<Order> orders = env.fromCollection(orderList);Table ordersTable = tenv.fromDataStream(orders, $("id"), $("user_id"), $("amount"),$("rowtime"));Table result = ordersTable
            .joinLateral(call("split", $("c")).as("s","t","v")).select($("a"), $("b"), $("s"), $("t"), $("v"));
        
        
        env.execute();}/**
     * join 表和表函数的结果。左(外部)表的每一行都会 join 表函数相应调用产生的所有行。
     * 如果表函数调用返回空结果,则保留相应的 outer(外部连接)行并用空值填充右侧结果。
     * 目前,表函数左外连接的谓词只能为空或字面(常量)真。
     * 该示例为示例性的,具体的验证将在自定义函数中进行说明
     * 
     * @throws Exception
     */staticvoidtestLeftOuterJoinWithUDTF()throwsException{StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv =StreamTableEnvironment.create(env);// 注册 User-Defined Table FunctionTableFunction<Tuple3<String,String,String>> split =newSplitFunction();
        tenv.registerFunction("split", split);// joinDataStream<Order> orders = env.fromCollection(orderList);Table ordersTable = tenv.fromDataStream(orders, $("id"), $("user_id"), $("amount"),$("rowtime"));Table result = ordersTable
            .leftOuterJoinLateral(call("split", $("c")).as("s","t","v")).select($("a"), $("b"), $("s"), $("t"), $("v"));
        
        
        env.execute();}/**
     * Temporal table 是跟踪随时间变化的表。
     * Temporal table 函数提供对特定时间点 temporal table 状态的访问。
     * 表与 temporal table 函数进行 join 的语法和使用表函数进行 inner join 的语法相同。
     * 目前仅支持与 temporal table 的 inner join。
     * 
     * @throws Exception
     */staticvoidtestJoinWithTemporalTable()throwsException{StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv =StreamTableEnvironment.create(env);Table ratesHistory = tenv.from("RatesHistory");// 注册带有时间属性和主键的 temporal table functionTemporalTableFunction rates = ratesHistory.createTemporalTableFunction(
            $("r_proctime"),
            $("r_currency"));
        tenv.registerFunction("rates", rates);// 基于时间属性和键与“Orders”表关联Table orders = tenv.from("Orders");Table result = orders
            .joinLateral(call("rates", $("o_proctime")), $("o_currency").isEqual($("r_currency")));
        
        env.execute();}/**
     * @param args
     * @throws Exception 
     */publicstaticvoidmain(String[] args)throwsException{//        testInnerJoin();//        testOuterJoin();//        testIntervalJoin();testInnerJoinWithUDTF();}staticclassSplitFunctionextendsTableFunction<Tuple3<String,String,String>>{publicvoideval(Tuple3<String,String,String> tp){//            for (String s : str.split(",")) {//              // use collect(...) to emit a row              collect(Row.of(s, s.length()));//            }}}}

2)、关于时态表的示例

该示例来源于:https://developer.aliyun.com/article/679659
假设有一张订单表Orders和一张汇率表Rates,那么订单来自于不同的地区,所以支付的币种各不一样,那么假设需要统计每个订单在下单时候Yen币种对应的金额。
在这里插入图片描述

  • 统计需求对应的SQL
SELECT o.currency, o.amount, r.rate
  o.amount * r.rate AS yen_amount
FROM
  Orders AS o,
  LATERAL TABLE(Rates(o.rowtime))AS r
WHERE r.currency = o.currency
  • Without connnector 实现代码
object TemporalTableJoinTest {def main(args: Array[String]):Unit={val env = StreamExecutionEnvironment.getExecutionEnvironment
    val tEnv = TableEnvironment.getTableEnvironment(env)
    env.setParallelism(1)// 设置时间类型是 event-time  env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)// 构造订单数据val ordersData =new mutable.MutableList[(Long,String, Timestamp)]
    ordersData.+=((2L,"Euro",new Timestamp(2L)))
    ordersData.+=((1L,"US Dollar",new Timestamp(3L)))
    ordersData.+=((50L,"Yen",new Timestamp(4L)))
    ordersData.+=((3L,"Euro",new Timestamp(5L)))//构造汇率数据val ratesHistoryData =new mutable.MutableList[(String,Long, Timestamp)]
    ratesHistoryData.+=(("US Dollar",102L,new Timestamp(1L)))
    ratesHistoryData.+=(("Euro",114L,new Timestamp(1L)))
    ratesHistoryData.+=(("Yen",1L,new Timestamp(1L)))
    ratesHistoryData.+=(("Euro",116L,new Timestamp(5L)))
    ratesHistoryData.+=(("Euro",119L,new Timestamp(7L)))// 进行订单表 event-time 的提取val orders = env
      .fromCollection(ordersData).assignTimestampsAndWatermarks(new OrderTimestampExtractor[Long,String]()).toTable(tEnv,'amount, 'currency,'rowtime.rowtime)// 进行汇率表 event-time 的提取val ratesHistory = env
      .fromCollection(ratesHistoryData).assignTimestampsAndWatermarks(new OrderTimestampExtractor[String,Long]()).toTable(tEnv,'currency, 'rate,'rowtime.rowtime)// 注册订单表和汇率表
    tEnv.registerTable("Orders", orders)
    tEnv.registerTable("RatesHistory", ratesHistory)val tab = tEnv.scan("RatesHistory");// 创建TemporalTableFunctionval temporalTableFunction = tab.createTemporalTableFunction('rowtime, 'currency)//注册TemporalTableFunction
tEnv.registerFunction("Rates",temporalTableFunction)val SQLQuery ="""
        |SELECT o.currency, o.amount, r.rate,
        |  o.amount * r.rate AS yen_amount
        |FROM
        |  Orders AS o,
        |  LATERAL TABLE (Rates(o.rowtime)) AS r
        |WHERE r.currency = o.currency
        |""".stripMargin

    tEnv.registerTable("TemporalJoinResult", tEnv.SQLQuery(SQLQuery))val result = tEnv.scan("TemporalJoinResult").toAppendStream[Row]// 打印查询结果
    result.print()
    env.execute()}}

OrderTimestampExtractor 实现如下

import java.SQL.Timestampimport org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor
import org.apache.flink.streaming.api.windowing.time.Time

class OrderTimestampExtractor[T1, T2]
  extends BoundedOutOfOrdernessTimestampExtractor[(T1, T2,Timestamp)](Time.seconds(10)) {
  override def extractTimestamp(element: (T1, T2,Timestamp)): Long = {
    element._3.getTime
  }
}
  • With CSVConnector 实现代码

在实际的生产开发中,都需要实际的Connector的定义,下面我们以CSV格式的Connector定义来开发Temporal Table JOIN Demo。

1、genEventRatesHistorySource

def genEventRatesHistorySource: CsvTableSource ={val csvRecords = Seq("ts#currency#rate","1#US Dollar#102","1#Euro#114","1#Yen#1","3#Euro#116","5#Euro#119","7#Pounds#108")// 测试数据写入临时文件val tempFilePath =
      FileUtils.writeToTempFile(csvRecords.mkString(CommonUtils.line),"csv_source_rate","tmp")// 创建Source connectornew CsvTableSource(
      tempFilePath,
      Array("ts","currency","rate"),
      Array(
        Types.LONG,Types.STRING,Types.LONG
      ),
      fieldDelim ="#",
      rowDelim = CommonUtils.line,
      ignoreFirstLine =true,
      ignoreComments ="%")}

2、genRatesOrderSource

def genRatesOrderSource: CsvTableSource ={val csvRecords = Seq("ts#currency#amount","2#Euro#10","4#Euro#10")// 测试数据写入临时文件val tempFilePath =
      FileUtils.writeToTempFile(csvRecords.mkString(CommonUtils.line),"csv_source_order","tmp")// 创建Source connectornew CsvTableSource(
      tempFilePath,
      Array("ts","currency","amount"),
      Array(
        Types.LONG,Types.STRING,Types.LONG
      ),
      fieldDelim ="#",
      rowDelim = CommonUtils.line,
      ignoreFirstLine =true,
      ignoreComments ="%")}

3、主程序

importjava.io.File

importorg.apache.flink.api.common.typeinfo.{TypeInformation, Types}importorg.apache.flink.book.utils.{CommonUtils, FileUtils}importorg.apache.flink.table.sinks.{CsvTableSink, TableSink}importorg.apache.flink.table.sources.CsvTableSource
importorg.apache.flink.types.Row

object CsvTableSourceUtils {def genWordCountSource: CsvTableSource ={val csvRecords = Seq("words","Hello Flink","Hi, Apache Flink","Apache FlinkBook")// 测试数据写入临时文件val tempFilePath =
      FileUtils.writeToTempFile(csvRecords.mkString("$"),"csv_source_","tmp")// 创建Source connectornew CsvTableSource(
      tempFilePath,
      Array("words"),
      Array(
        Types.STRING
      ),
      fieldDelim ="#",
      rowDelim ="$",
      ignoreFirstLine =true,
      ignoreComments ="%")}def genRatesHistorySource: CsvTableSource ={val csvRecords = Seq("rowtime ,currency   ,rate","09:00:00   ,US Dollar  , 102","09:00:00   ,Euro       , 114","09:00:00  ,Yen        ,   1","10:45:00   ,Euro       , 116","11:15:00   ,Euro       , 119","11:49:00   ,Pounds     , 108")// 测试数据写入临时文件val tempFilePath =
      FileUtils.writeToTempFile(csvRecords.mkString("$"),"csv_source_","tmp")// 创建Source connectornew CsvTableSource(
      tempFilePath,
      Array("rowtime","currency","rate"),
      Array(
        Types.STRING,Types.STRING,Types.STRING
      ),
      fieldDelim =",",
      rowDelim ="$",
      ignoreFirstLine =true,
      ignoreComments ="%")}def genEventRatesHistorySource: CsvTableSource ={val csvRecords = Seq("ts#currency#rate","1#US Dollar#102","1#Euro#114","1#Yen#1","3#Euro#116","5#Euro#119","7#Pounds#108")// 测试数据写入临时文件val tempFilePath =
      FileUtils.writeToTempFile(csvRecords.mkString(CommonUtils.line),"csv_source_rate","tmp")// 创建Source connectornew CsvTableSource(
      tempFilePath,
      Array("ts","currency","rate"),
      Array(
        Types.LONG,Types.STRING,Types.LONG
      ),
      fieldDelim ="#",
      rowDelim = CommonUtils.line,
      ignoreFirstLine =true,
      ignoreComments ="%")}def genRatesOrderSource: CsvTableSource ={val csvRecords = Seq("ts#currency#amount","2#Euro#10","4#Euro#10")// 测试数据写入临时文件val tempFilePath =
      FileUtils.writeToTempFile(csvRecords.mkString(CommonUtils.line),"csv_source_order","tmp")// 创建Source connectornew CsvTableSource(
      tempFilePath,
      Array("ts","currency","amount"),
      Array(
        Types.LONG,Types.STRING,Types.LONG
      ),
      fieldDelim ="#",
      rowDelim = CommonUtils.line,
      ignoreFirstLine =true,
      ignoreComments ="%")}/**
    * Example:
    * genCsvSink(
    *   Array[String]("word", "count"),
    *   Array[TypeInformation[_] ](Types.STRING, Types.LONG))
    */def genCsvSink(fieldNames: Array[String], fieldTypes: Array[TypeInformation[_]]): TableSink[Row]={val tempFile = File.createTempFile("csv_sink_","tem")if(tempFile.exists()){
      tempFile.delete()}new CsvTableSink(tempFile.getAbsolutePath).configure(fieldNames, fieldTypes)}}

4、运行结果
在这里插入图片描述

以上,通过示例介绍了如何使用table api进行表、视图、窗口函数的操作,同时也介绍了table api对表的查询、过滤、列、聚合以及join操作。关于表的set、order by、insert、group window、over window等相关操作详见下篇文章:17、Flink 之Table API: Table API 支持的操作(2)


本文转载自: https://blog.csdn.net/chenwewi520feng/article/details/131953473
版权归原作者 一瓢一瓢的饮 alanchan 所有, 如有侵权,请联系我们删除。

“17、Flink 之Table API: Table API 支持的操作(1)”的评论:

还没有评论