文章目录
目标检测+分类数据集大全https://blog.csdn.net/DeepLearning_/article/details/127276492?spm=1001.2014.3001.5502:
前言
本打算昨天写这篇博客的,推迟到今天晚上。实际上,上午我已经把模型训练完了,迭代100次,最后准确率可达到95%,考虑到用的台式机没有装显卡,所以使用的数据集一共只有340张。分布情况如下。
【训练集】女性:150张; 男性:150张
【验证集】女性:20张; 男性:20张
数据集预览
女性数据
男性数据
提示:以下是本篇文章正文内容,下面案例可供参考
一、数据预处理
1.分类数据存放
分类数据是不需要像目标检测数据样,每张图片去打标签,我们唯一需要做的就是把同类照片放到一个文件夹。如我们新建一个名字为“0”的文件夹,用于存放所有用于训练的150张女性图片,新建一个名字为“1”的文件夹,用于存放所有用于训练的150张男性图片。同理,验证集也如此排布。如下图所示,为我的数据排布情况,数据集存放在gender_data文件夹里。
2.生成train.txt与val.txt
图片数据排布完后,还需要做的就是使用脚本工具,分别生成训练集和验证集的存储路径及对应标签(0或者1)。这一步至关重要,必不可少。因为训练时,就是通过读取这两个txt文件里的路径,来读取训练集和验证集的图片,并输送给网络,同时给对应的标签类别。
脚本命名Build_all_classes_path_to_txt.py
注意:需要分两次执行,分别创建train.txt与val.txt,记得更改路径
import os
import os.path
deflistfiles(rootDir, txtfile, foldnam =''):
ftxtfile =open(txtfile,'a')
list_dirs = os.walk(rootDir)#foldnam = FolderName[0]#print(foldnam)
count =0
dircount =0for root,dirs,files in list_dirs:for d in dirs:#print(os.path.join(root, d))
dircount +=1for f in files:#print(os.path.join(root, f))
ftxtfile.write(os.path.join(root, f)+' '+ foldnam +'\n')
count +=1#print(rootDir + ' has ' + str(count) + ' files')#获取路径下所有文件夹的完整路径,用于读取文件用 defGetFileFromThisRootDir(dir):
allfolder =[]
folder_name =''for root,dirs,files in os.walk(dir):
allfolder.append(root)"""
for filespath in files:
filepath = os.path.join(root, filespath)
#print(filepath)
extension = os.path.splitext(filepath)[1][1:]
if needExtFilter and extension in ext:
allfiles.append(filepath)
elif not needExtFilter:
allfiles.append(filepath)
"""
All_folder = allfolder
#print(All_folder)for folder_num in All_folder[1:]:#print(folder_num)
folder_name = folder_num.split('/')[:]print(folder_name)
listfiles(folder_num, txtfile_path, folder_name[-1])return#def Generate_path_to_txt(FolderPath=[]):# print(FolderPath)if __name__=='__main__':
folder_path ='F:/Study_code/classification-pytorch/Classification-MaleFemale-pytorch/gender_data/val/'#val and train folder
txtfile_path ='F:/Study_code/classification-pytorch/Classification-MaleFemale-pytorch/gender_data/val.txt'
folder_path = GetFileFromThisRootDir(folder_path)
生成的.txt文件内容如下
二、更改配置文件
1.自定义修改
实际上很多可以修改,如loss选择、梯度下降方法、学习率、衰减率等等。
代码如下(示例):
classConfig(object):
num_classes =2
loss ='softmax'#focal_loss
test_root ='gender_data/'
test_list ='gender_data/val.txt'
train_batch_size =16# batch size
train_root ='gender_data/'
train_list ='gender_data/train.txt'
finetune =False
load_model_path ='checkpoints/model-epoch-1.pth'
save_interval =1
input_shape =(3,112,112)
optimizer ='sgd'# optimizer should be sgd, adam
num_workers =4# how many workers for loading data
print_freq =10# print info every N batch
milestones =[60,100]# adjust lr
lr =0.1# initial learning rate
max_epoch =100# max epoch
lr_decay =0.95# when val_loss increase, lr = lr*lr_decay
weight_decay =5e-4
三、定义resnet网络
实际上resnet网络pytorch内部经典网络中已存在,但作者还是参考开源代码自己构建了一个resnet网络的py文件resnet.py。这个可直接拿来使用。本次训练使用的是resnet18.
代码如下(示例):
"""resnet in pytorch
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
Deep Residual Learning for Image Recognition
https://arxiv.org/abs/1512.03385v1
"""import torch
import torch.nn as nn
classFlatten(nn.Module):defforward(self,input):#print(input.view(input.size(0), -1).shape)returninput.view(input.size(0),-1)classBasicBlock(nn.Module):"""Basic Block for resnet 18 and resnet 34
"""
expansion =1def__init__(self, in_channels, out_channels, stride=1):super().__init__()#residual function
self.residual_function = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels * BasicBlock.expansion, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_channels * BasicBlock.expansion))#shortcut
self.shortcut = nn.Sequential()#the shortcut output dimension is not the same with residual function#use 1*1 convolution to match the dimensionif stride !=1or in_channels != BasicBlock.expansion * out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels * BasicBlock.expansion, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels * BasicBlock.expansion))defforward(self, x):return nn.ReLU(inplace=True)(self.residual_function(x)+ self.shortcut(x))classBottleNeck(nn.Module):"""Residual block for resnet over 50 layers
"""
expansion =4def__init__(self, in_channels, out_channels, stride=1):super().__init__()
self.residual_function = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, stride=stride, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels * BottleNeck.expansion, kernel_size=1, bias=False),
nn.BatchNorm2d(out_channels * BottleNeck.expansion),)
self.shortcut = nn.Sequential()if stride !=1or in_channels != out_channels * BottleNeck.expansion:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels * BottleNeck.expansion, stride=stride, kernel_size=1, bias=False),
nn.BatchNorm2d(out_channels * BottleNeck.expansion))defforward(self, x):return nn.ReLU(inplace=True)(self.residual_function(x)+ self.shortcut(x))classResNet(nn.Module):def__init__(self, block, num_block, scale=0.25, num_classes=2):super().__init__()
self.in_channels =int(64* scale)
self.conv1 = nn.Sequential(
nn.Conv2d(3,int(64* scale), kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(int(64* scale)),
nn.ReLU(inplace=True))#we use a different inputsize than the original paper#so conv2_x's stride is 1
self.conv2_x = self._make_layer(block,int(64* scale), num_block[0],2)
self.conv3_x = self._make_layer(block,int(128* scale), num_block[1],2)
self.conv4_x = self._make_layer(block,int(256* scale), num_block[2],2)
self.conv5_x = self._make_layer(block,int(512* scale), num_block[3],2)
self.output = nn.Sequential(
nn.Conv2d(int(512*scale),int(512*scale), kernel_size=(7,7), stride=1, groups=int(512*scale), bias=False),
nn.BatchNorm2d(int(512*scale)),
Flatten(),#nn.Linear(int(32768 * scale), num_classes)
nn.Linear(int(512* scale), num_classes))def_make_layer(self, block, out_channels, num_blocks, stride):"""make resnet layers(by layer i didnt mean this 'layer' was the
same as a neuron netowork layer, ex. conv layer), one layer may
contain more than one residual block
Args:
block: block type, basic block or bottle neck block
out_channels: output depth channel number of this layer
num_blocks: how many blocks per layer
stride: the stride of the first block of this layer
Return:
return a resnet layer
"""# we have num_block blocks per layer, the first block # could be 1 or 2, other blocks would always be 1
strides =[stride]+[1]*(num_blocks -1)
layers =[]for stride in strides:
layers.append(block(self.in_channels, out_channels, stride))
self.in_channels = out_channels * block.expansion
return nn.Sequential(*layers)defforward(self, x):
output = self.conv1(x)
output = self.conv2_x(output)
output = self.conv3_x(output)
output = self.conv4_x(output)
output = self.conv5_x(output)
output = self.output(output)return output
defresnet18():""" return a ResNet 18 object
"""return ResNet(BasicBlock,[2,2,2,2])defresnet34():""" return a ResNet 34 object
"""return ResNet(BasicBlock,[3,4,6,3])defresnet50():""" return a ResNet 50 object
"""return ResNet(BottleNeck,[3,4,6,3])defresnet101():""" return a ResNet 101 object
"""return ResNet(BottleNeck,[3,4,23,3])defresnet152():""" return a ResNet 152 object
"""return ResNet(BottleNeck,[3,8,36,3])from thop import profile
from thop import clever_format
if __name__=='__main__':input= torch.Tensor(1,3,112,112)
model = resnet18()#print(model)
flops, params = profile(model, inputs=(input,))
flops, params = clever_format([flops, params],"%.3f")#print(model)print('VoVNet Flops:', flops,',Params:',params)
四、train.py训练
训练代码及书写逻辑也是个常规操作,很好理解,关键点在于如何去加载数据,并做预处理变换。
代码如下(示例),仅供参考:
import torch
from torch.utils import data
import os
import time
import numpy as np
from models.resnet import*#resnet34from models.mobilenetv2 import mobilenetv2
#from models.mobilenetv3 import *#from models.repvgg import *from data.dataset import Dataset
from config.config import Config
from loss.focal_loss import FocalLoss
from utils.cosine_lr_scheduler import CosineDecayLR
#from torch.autograd import Variabledeftrain(model, criterion, optimizer, scheduler, trainloader, epoch):
model.train()for ii, data inenumerate(trainloader):
start = time.time()
iters = epoch *len(trainloader)+ ii
scheduler.step(iters +1)
data_input, label = data
#print(data_input, label)#data_input, label = Variable(data_input), Variable(label)-1
data_input = data_input.to(device)
label = label.to(device).long()
output = model(data_input)#print(output)#print(label)
loss = criterion(output, label)
optimizer.zero_grad()
loss.backward()
optimizer.step()if iters % opt.print_freq ==0:
output = output.data.cpu().numpy()
output = np.argmax(output, axis=1)
label = label.data.cpu().numpy()
acc = np.mean((output == label).astype(int))
speed = opt.print_freq /(time.time()- start)
time_str = time.asctime(time.localtime(time.time()))print(time_str,'epoch', epoch,'iters', iters,'speed', speed,'lr',optimizer.param_groups[0]['lr'],'loss', loss.cpu().detach().numpy(),'acc', acc)defeval_train(model, criterion, testloader):
model.eval()
test_loss =0.0# cost function error
correct =0.0with torch.no_grad():for(datas, labels)in testloader:
datas = datas.to(device)
labels = labels.to(device).long()
outputs = model(datas)
loss = criterion(outputs, labels)
test_loss += loss.item()
_, preds = outputs.max(1)
correct += preds.eq(labels).sum()print('Test set: Average loss: {:.4f}, Accuracy: {:.4f}'.format(
test_loss /len(testloader),
correct.float()/len(testloader)))if __name__ =='__main__':
opt = Config()#os.environ['CUDA_VISIBLE_DEVICES'] = '0'#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = torch.device("cpu")
test_dataset = Dataset(opt.test_root, opt.test_list, phase='test', input_shape=opt.input_shape)
testloader = data.DataLoader(test_dataset,
shuffle=False,
pin_memory=True,
num_workers=opt.num_workers)
train_dataset = Dataset(opt.train_root, opt.train_list, phase='train', input_shape=opt.input_shape)
trainloader = data.DataLoader(train_dataset,
batch_size=opt.train_batch_size,
shuffle=True,
pin_memory=True,
num_workers=opt.num_workers)if opt.loss =='focal_loss':
criterion = FocalLoss(gamma=2)else:
criterion = torch.nn.CrossEntropyLoss()
model = resnet18()#model = get_RepVGG_func_by_name('RepVGG-B0')#model = mobilenetv2()if opt.finetune ==True:
model.load_state_dict(torch.load(opt.load_model_path))
model = torch.nn.DataParallel(model)
model.to(device)
total_batch =len(trainloader)
NUM_BATCH_WARM_UP = total_batch *5
optimizer = torch.optim.SGD(model.parameters(), lr=opt.lr, weight_decay=opt.weight_decay)
scheduler = CosineDecayLR(optimizer, opt.max_epoch * total_batch, opt.lr,1e-6, NUM_BATCH_WARM_UP)print('{} train iters per epoch in dataset'.format(len(trainloader)))for epoch inrange(0, opt.max_epoch):
train(model, criterion, optimizer, scheduler, trainloader, epoch)if epoch % opt.save_interval ==0or epoch ==(opt.max_epoch -1):
torch.save(model.module.state_dict(),'checkpoints/model-epoch-'+str(epoch)+'.pth')
eval_train(model, criterion, testloader)
训练过程日志打印如下,最后的预测准确率还不错:
五、预测predict.py实现
代码如下(示例),仅供参考:
from torch.autograd import Variable
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt # plt 用于显示图片from PIL import Image, ImageDraw, ImageFont
import cv2
import numpy as np
from models.resnet import*from config.config import Config
from models.mobilenetv2 import*defshow_infer_result(result):
font = ImageFont.truetype('data/font/HuaWenXinWei-1.ttf',50)
plt.rcParams['font.sans-serif']=['SimHei']# 中文乱码
plt.subplot(121)
plt.imshow(image)
plt.title('测试图片')#不显示坐标轴
plt.axis('off')#子图2
plt.subplot(122)
img2_2 = cv2.imread('./test2.jpg')
cv2img = cv2.cvtColor(img2_2, cv2.COLOR_BGR2RGB)
img_PIL = Image.fromarray(cv2img)
draw = ImageDraw.Draw(img_PIL)
label =''if result ==0:
label ='女性'else:
label ='男性'
draw.text((170,150), label, fill=(255,0,255), font=font, align='center')
cheng = cv2.cvtColor(np.array(img_PIL), cv2.COLOR_RGB2BGR)
plt.imshow(cheng)
plt.title('预测结果')
plt.axis('off')# #设置子图默认的间距
plt.tight_layout()#显示图像
plt.show()defmodel_infer(img, model_path):
data_transforms = transforms.Compose([
transforms.Resize([112,112]),
transforms.ToTensor(),
transforms.Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])])# net = resnet18().cuda().eval() # 实例化自己的模型;
net = resnet18().eval()# resnet模型
net.load_state_dict((torch.load(model_path)),False)
imgblob = data_transforms(img).unsqueeze(0).type(torch.FloatTensor).cpu()#print(imgblob)
imgblob = Variable(imgblob)
torch.no_grad()
output = net(imgblob)
_, pred = output.max(1)# print("output ---> ",output)
predict_result = pred.numpy()
show_infer_result(predict_result)return predict_result
if __name__ =="__main__":
imagepath ='./gender_data/val/1/14901.png'
image = Image.open(imagepath)
model_path ="./checkpoints/model-epoch-99.pth"
model_infer(image, model_path)print("====infer over!")
六、预测结果
女性图片测试
男性图片测试
七、完整项目代码+数据集(大于1500张)
源码(训练代码及预测代码)+模型+数据集下载:https://download.csdn.net/download/DeepLearning_/87190601
觉得有用的,感谢先点赞+收藏+关注吧,
如何快速搭建神经网络并训练,请参考另外博客:五步教你使用Pytorch搭建神经网络并训练
总结
本文属于使用resnet网络+pytorch深度学习框架,实现男女性别识别分类模型的训练+预测,当然还包括了分类数据集制作,公开了项目部分代码仅供参考学习,后续会补上多组对比实验和代码模型。敬请关注!
版权归原作者 Strawssberry 所有, 如有侵权,请联系我们删除。