0


改进yolov8|FasterNet替换主干网络,跑得飞快!!

改进yolov8|FasterNet替换主干网络,跑得飞快!!

各位哥哥姐姐弟弟妹妹大家好,我是干饭王刘姐,主业干饭,主业2.0计算机研究生在读。
和我一起来改进yolov8变身计算机大牛吧!
本文中的论文笔记都是刘姐亲自整理,原创整理哦~

一、FasterNet简介

论文地址

https://export.arxiv.org/pdf/2303.03667v1.pdf

代码地址

https://github.com/JierunChen/FasterNet

论文内容(原创整理)

在这里插入图片描述

前述

  • 提出了一种新的部分卷积(PConv),更有效地提取空间特征,同时减少冗余计算和内存访问。
  • MobileNets,ShuffleNets 和GhostNet 等利用 dependency卷积(DWConv)和/或组卷积(GConv)来提取空间特征。然而,在努力减少FLOP的过程中,操作员经常遭受增加的存储器访问的副作用。MicroNet 进一步分解和稀疏化网络,将其FLOP推到极低的水平。
  • 延迟Latency = FLOPs/FLOPS, FLOPS是每秒浮点运算的缩写,作为有效计算速度的度量。
  • 本文旨在通过开发一种简单而快速有效的运算符来消除这种差异,该运算符可以在降低FLOPs的情况下保持高FLOPS。
  • 从本质上讲,PConv具有比常规Conv更低的FLOPS,而具有比DWConv/GConv更高的FLOPS。换句话说,PConv更好地利用了设备上的计算能力。
  • 基于DWConv

贡献

  • 指出了实现更高FLOPS的重要性,而不仅仅是为了更快的神经网络而减少FLOPS。·
  • 引入了一个简单而快速有效的算子PConv,它很有可能取代现有的首选项DWConv。·
  • 推出FasterNet,它可以在GPU,CPU和ARM处理器等各种设备上顺利运行,速度普遍很快。·
  • 对各种任务进行了广泛的实验,并验证了PConv和FasterNet的高速和有效性。

具体

  • 它只是在一部分输入通道上应用常规Conv进行空间特征提取,其余通道保持不变。
  • PConv的FLOPs为:hwkkcp*cp。
  • 内存访问量:hw2cp+kkcpcp。
  • PConv后接PWConv(逐点卷积)
  • FasterNet,这是一种新的神经网络家族,运行速度快,对许多视觉任务非常有效。PConv结构图FasterNet

显著效果

时间提高巨大50%+,GFLOPs减少60%+

改进过程

FasterNet核心代码(添加到ultralytics/nn/modules/block.py):

# --------------------------FasterNet----------------------------
from timm.models.layers import DropPath

class Partial_conv3(nn.Module):
    def __init__(self, dim, n_div, forward):
        super().__init__()
        self.dim_conv3 = dim // n_div
        self.dim_untouched = dim - self.dim_conv3
        self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False)

        if forward == 'slicing':
            self.forward = self.forward_slicing
        elif forward == 'split_cat':
            self.forward = self.forward_split_cat
        else:
            raise NotImplementedError

    def forward_slicing(self, x):
        # only for inference
        x = x.clone()  # !!! Keep the original input intact for the residual connection later
        x[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :])

        return x

    def forward_split_cat(self, x):
        # for training/inference
        x1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1)
        x1 = self.partial_conv3(x1)
        x = torch.cat((x1, x2), 1)
        return x

class MLPBlock(nn.Module):
    def __init__(self,
                 dim,
                 n_div,
                 mlp_ratio,
                 drop_path,
                 layer_scale_init_value,
                 act_layer,
                 norm_layer,
                 pconv_fw_type
                 ):

        super().__init__()
        self.dim = dim
        self.mlp_ratio = mlp_ratio
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.n_div = n_div

        mlp_hidden_dim = int(dim * mlp_ratio)
        mlp_layer = [
            nn.Conv2d(dim, mlp_hidden_dim, 1, bias=False),
            norm_layer(mlp_hidden_dim),
            act_layer(),
            nn.Conv2d(mlp_hidden_dim, dim, 1, bias=False)
        ]
        self.mlp = nn.Sequential(*mlp_layer)
        self.spatial_mixing = Partial_conv3(
            dim,
            n_div,
            pconv_fw_type
        )
        if layer_scale_init_value > 0:
            self.layer_scale = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
            self.forward = self.forward_layer_scale
        else:
            self.forward = self.forward

    def forward(self, x):
        shortcut = x
        x = self.spatial_mixing(x)
        x = shortcut + self.drop_path(self.mlp(x))
        return x

    def forward_layer_scale(self, x):
        shortcut = x
        x = self.spatial_mixing(x)
        x = shortcut + self.drop_path(
            self.layer_scale.unsqueeze(-1).unsqueeze(-1) * self.mlp(x))
        return x

class BasicStage(nn.Module):
    def __init__(self,
                 dim,
                 depth=1,
                 n_div=4,
                 mlp_ratio=2,
                 layer_scale_init_value=0,
                 norm_layer=nn.BatchNorm2d,
                 act_layer=nn.ReLU,
                 pconv_fw_type='split_cat'
                 ):
        super().__init__()
        dpr = [x.item()
               for x in torch.linspace(0, 0.0, sum([1, 2, 8, 2]))]
        blocks_list = [
            MLPBlock(
                dim=dim,
                n_div=n_div,
                mlp_ratio=mlp_ratio,
                drop_path=dpr[i],
                layer_scale_init_value=layer_scale_init_value,
                norm_layer=norm_layer,
                act_layer=act_layer,
                pconv_fw_type=pconv_fw_type
            )
            for i in range(depth)
        ]

        self.blocks = nn.Sequential(*blocks_list)

    def forward(self, x):
        x = self.blocks(x)
        return x

class PatchEmbed_FasterNet(nn.Module):

    def __init__(self, in_chans, embed_dim, patch_size, patch_stride, norm_layer=nn.BatchNorm2d):
        super().__init__()
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_stride, bias=False)
        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = nn.Identity()

    def forward(self, x):
        x = self.norm(self.proj(x))
        return x

    def fuseforward(self, x):
        x = self.proj(x)
        return x

class PatchMerging_FasterNet(nn.Module):

    def __init__(self, dim, out_dim, k, patch_stride2, norm_layer=nn.BatchNorm2d):
        super().__init__()
        self.reduction = nn.Conv2d(dim, out_dim, kernel_size=k, stride=patch_stride2, bias=False)
        if norm_layer is not None:
            self.norm = norm_layer(out_dim)
        else:
            self.norm = nn.Identity()

    def forward(self, x):
        x = self.norm(self.reduction(x))
        return x

    def fuseforward(self, x):
        x = self.reduction(x)
        return x

并在ultralytics/nn/modules/block.py中最上方“all”中引用‘BasicStage’, ‘PatchEmbed_FasterNet’, ‘PatchMerging_FasterNet’

在ultralytics/nn/modules/init.py中

from .block import (....,BasicStage,PatchEmbed_FasterNet,PatchMerging_FasterNet)

在 ultralytics/nn/tasks.py 上方

from ultralytics.nn.modules import (....BasicStage, PatchEmbed_FasterNet, PatchMerging_FasterNet)

在parse_model解析函数中添加如下代码:

if m in (... BasicStage, PatchEmbed_FasterNet, PatchMerging_FasterNet):

        elif m in [BasicStage]:
                args.pop(1)

在 ultralytics/nn/tasks.py 中的self.model.modules()后面添加

                if type(m) is PatchEmbed_FasterNet:
                    m.proj = fuse_conv_and_bn(m.proj, m.norm)
                    delattr(m, 'norm')  # remove BN
                    m.forward = m.fuseforward
                if type(m) is PatchMerging_FasterNet:
                    m.reduction = fuse_conv_and_bn(m.reduction, m.norm)
                    delattr(m, 'norm')  # remove BN
                    m.forward = m.fuseforward

在ultralytics/cfg/models/v8文件夹下新建yolov8-FasterNet.yaml文件

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, PatchEmbed_FasterNet, [40, 4, 4]]  # 0-P1/4
  - [-1, 1, BasicStage, [40, 1]]  # 1
  - [-1, 1, PatchMerging_FasterNet, [80, 2, 2]]  # 2-P2/8
  - [-1, 2, BasicStage, [80, 1]]  # 3-P3/16
  - [-1, 1, PatchMerging_FasterNet, [160, 2, 2]]  # 4
  - [-1, 8, BasicStage, [160, 1]]  # 5-P4/32
  - [-1, 1, PatchMerging_FasterNet, [320, 2, 2]] # 6
  - [-1, 2, BasicStage, [320, 1]] # 7
  - [-1, 1, SPPF, [320, 5]]  # 8

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 5], 1, Concat, [1]]  # cat backbone P4
  - [-1, 1, C2f, [512]]  # 11

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 3], 1, Concat, [1]]  # cat backbone P3
  - [-1, 1, C2f, [256]]  # 14 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 11], 1, Concat, [1]]  # cat head P4
  - [-1, 1, C2f, [512]]  # 17 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 8], 1, Concat, [1]]  # cat head P5
  - [-1, 1, C2f, [1024]]  # 20 (P5/32-large)

  - [[14, 17, 20], 1, Detect, [nc]]  # Detect(P3, P4, P5)

运行即可


本文转载自: https://blog.csdn.net/weixin_44379985/article/details/138545894
版权归原作者 干饭王也敲代码 所有, 如有侵权,请联系我们删除。

“改进yolov8|FasterNet替换主干网络,跑得飞快!!”的评论:

还没有评论